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Abstract In this paper, we propose a central pattern generator (CPG) network with independent controllability for a
quadrupedal locomotion signal generator. The proposed model comprises several CPGs and one rhythm generator (RG). Each
CPG and the RG are described by the van der Pol (VDP) equation. The VDP equation has a limit cycle and a feature of indepen-
dent controllability in terms of the amplitude and period of the limit cycle. The amplitude and period of an output signal from each
CPG and the RG are independently controlled by external signals, because the CPGs and RG are designed such that the feature
of the VDP equation is maintained. In order to control the phase shift between CPGs, the period of the output signal from each
CPG is temporarily controlled through connections that are only conjunctions between the RG and each CPG. The proposed CPG
network is applied to a quadrupedal locomotion signal generator, and generates typical quadrupedal locomotion signals, which

are the walk, trot, bound and gallop modes.
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1. Introduction

Locomotion signals such as walking, running, swim-
ming and flying are generated and controlled by the cen-
tral nervous system so called the central pattern generator
(CPG) [1]. Locomotion signals of terrestrial animals can
be classified into some periodic patterns that are gaits. In
recent years, many CPG network models [2]-[4] have been
reported. The CPG network models comprise some oscil-
lators that are described by higher-order differential equa-
tions. In this paper, the oscillators are called CPGs. In
conventional network models, CPGs are coupled to each
other through connection weights because these structures
of the CPG network are designed from the viewpoint of
physiology.

One of the applications that we are aiming at is a walk-
ing robot. Each leg of the robot is controlled by an out-
put signal from each CPG. Output signals of the CPGs are
controlled by adjusting some connection weights through
trial and error and by changing configurations in the CPG
network. Generally, walking speed can be controlled by
changing the amplitudes of a signal. Additionally, if it is
necessary to change to a faster speed, periods of the signals
must be controlled. However, it is not so easy to control
and analyze the output signals of the CPG network in terms
of the amplitude and period of each CPG, and the phase
difference between CPGs. This is because these CPG net-
works consist of some CPGs that are described by higher-
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order differential equations and have mutual connections
between CPGs.

To solve these problems, in this paper, we propose a
CPG network with independent controllability in terms of
amplitude, period and phase difference [5], [6]. In order
to design a locomotion signal generator, the CPG must sat-
isfy two necessary and sufficient conditions: the CPG must
have (1) a limit cycle, which is represented by higher-order
nonlinear differential equations, and (2) a high controlla-
bility for the amplitude and period of the signal in the sta-
ble state, i.e., in the limit cycle. Moreover, in the CPG
network, the phase differences between the CPGs must
be controlled. The proposed CPG network comprises a
rhythm generator (RG) and some CPGs. Each CPG and
the RG are described by the Van der Pol (VDP) equation.
The VDP equation suits the CPG model well, because the
VDP equation is the simplest model that has a limit cy-
cle and features independent controllability with respect to
the amplitude and period of the limit cycle [7]. The am-
plitude and period of the output signal from each CPG are
controlled almost independently by external signals. The
phase difference between CPGs is controlled by changing
connections that are connected between the RG and each
CPG independently of the amplitude and period of each
CPG. Moreover, the configuration of the CPG network can
be logically and uniquely determined on the basis of a gait
transition. In this study, we apply the CPG network in the
quadrupedal locomotion signal generator and confirm that
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Fig. 1 Phase relations for four common quadrupedal gaits

the network can generate typical quadrupedal locomotion
signals, which are the walk, trot, bound and gallop modes.

2. Background and Methods
2.1 Quadrupedal gaits

Locomotion signals of quadrupedal animals are sepa-
rated in some periodic patterns so called gaits. These gaits
are generated and controlled depending on their speed of
locomotion and the condition of terrain [8]. In this paper,
we focus on four of the most common quadrupedal gaits -
the walk, trot, bound and gallop modes. These four gaits
are shown schematically in Fig. 1. LF, LH, RF and RH
stand for the left foreleg, left hindleg, right foreleg and
right hindleg, respectively. The arrow and equal sign in-
dicate the direction of the phase difference and in phase,
respectively. In the walk mode, which is a slow gait, the
limbs move in the order of LF, RH, RF and LH with a
quarter period. The phase relations of the walk mode are
shown in Fig. 1(a). In the trot mode, which is a medium-
speed gait, diagonal limbs, e.g., LF and RH, move together
and in phase, and pairs of diagonal limbs move half a pe-
riod out of phase with one another. Fig. 1(b) shows the
phase relations of the trot mode. The bound mode is a fast
gait. In this mode, the front and hind limbs, respectively,
move together and in phase, as Fig. 1(c) shows. The gallop
mode, which is also a fast gait, resembles a bound, except
for the limbs of the front and hind pairs being slightly out
of phase with each other. Fig. 1(d) shows the phase rela-
tions of the gallop mode. Other quadrupedal gaits, such as
the canter, exist, however, they are less common than these
four gaits and are therefore not considered in this paper.

In the present study, the CPG network model was con-
sidered to be in a particular gait mode when the rela-
tive phases of the respective oscillator output signals were
within 10% of a gait cycle of those expected for the ideal
gait. The above criterion was considered reasonable, given
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the variability of natural animal gaits [9], [10].
2.2 Van der Pol equation

The VDP equation was proposed by Van der Pol in
1926 [11]. The VDP equation describes the theory of
vacuum-tube oscillators, and is one of the simplest model
that has a limit cycle. The VDP equation is derived from
the enhanced and damped oscillations. To express a limit
of the amplitude, the term of a nonlinearity coeflicient is
assumed. The VDP equation is given by eq. (1).

d*x

dr
Here, € describes the nonlinearity coefficient and affects
the shape of its waveform. When the parameter € is small
(0<ex 1), the solution of the VDP equation is a sustained
sinusoidal oscillation.

Two sets of control parameters are inputted in the VDP

equation: the amplitude parameter 4 and the frequency pa-
rameter B [12], [13].
d*x
dr
Kryloff and Bogoliuboff have devised a method for the ap-
proximate solution of eq. (2) [14]. Hereafter, eq. (2) is

—E(l—xz)%er:O (1)

—26(142—)(?2)% +B*x=0 2)
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Fig. 3 Amplitude and period of limit cycle with two
parameter arrangements

called the VDP equation. The mathematical method is
based on the fact that this equation becomes a harmonic
oscillation if €=0 in the VDP equation.

&)
E%+B%=o 3)

Eq. (4) is derived from eq. (3).
x = asin(Bt + ¢) 4)

Here, a and ¢ are arbitrary constants. Eq. (4) shows that
the period can be controlled by adjusting the parameter B.
By Kryloff and Bogoliuboft approximation, furthermore,
the following equations are obtained.

L e - Ly 5)

ek (6)

From eq. (5), it can be seen that the amplitude reaches a
da

steady state, i.e., 4'=0, then a=24. In an actual simulation,
however, the amplitude does not accurately become 24 be-
cause a mathematically approximation method is used. Eq.
(6) shows that the period does not depend on time. From
eqs. (4) and (5), it is proved that the period and amplitude
of the limit cycle can be independently controlled by ad-
justing the parameters B and 4, respectively. Fig. 2 shows
the simulation results of the VDP equation, where, 4, B, €,
the initial value of x and the initial value of ‘(’7) were 1, 1,
0.2, 0.1 and 0.1, respectively. The stimulation of x=2.5 was
added in the 410 step. Fig. 3 shows the simulation results
of the VDP equation under some conditions of the parame-
ters A and B. In this simulation, €, and the initial values of
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Fig. 5 Block diagram of VDP equation

x and “’7) were 0.2, 0.5 and 0.1, respectively. In the simula-
tion, the amplitude and period were measured. In the case
of A=0, the VDP equation operated as the damped oscil-
lation. Oscillatory solutions are always obtained from the
VDP equation in the range of A<B. Fig. 3 shows that the
amplitude and period of the limit cycle could be indepen-
dently controlled by adjusting the parameters 4 and B.

From these results, it is confirmed that the VDP equa-
tion has a limit cycle and an independent controllability.
It is considered that the features must suit the CPG model
well [7].

3. CPG Network Model

In this section, we explain the CPG network with inde-
pendent controllability in terms of the amplitude and pe-
riod of the limit cycle, and the phase difference between
CPGs. The CPG network comprises some CPGs and one
rhythm generator (RG), and can be designed on the basis
of the VDP equation.

3.1 CPG model

The proposed CPG model holds the feature of the VDP
equation. The ith CPG model(CPG;) is written as eq. (7).

dzxi

dr?

dx;

— 2¢ (A2 — x,z) 7

+Bix; =0 (7)
Here, the parameter € is a small constant and is called a
nonlinearity coeflicient. x; is the output signal of CPG; (i=
1, 2,---, n). A and B; determine the amplitude and period
of x; in the stable state, respectively. The amplitude and
period are independently controlled by the parameters A
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Table 1 Combinations of ¢;; and ¢j
mode | [ci1,ci2] | [ear,ea2] | [car.c32] | [car,can]
walk | [L0] | [=L0] | [0,1] | [0.=1]

trot [1,0] | [-1,0] | [~1,0] | [1,0]
bound | [1,0] [1,0] | [~1,0] | [~1,0]
gallop | [1,0] | [0,-1] | [0,1] | [~1,0]

and B, respectively [7], [14]. In particular, the period is
inversely proportional to the parameter B;, and the ampli-
tude reaches 24 in the stable state. » denotes the required
number of CPGs in the CPG network.

In order to design the CPG network, the phase differ-
ence between CPGs must be controlled. To control the
phase difference, in this study, the phase of each CPG is
temporally shifted. The parameter B; represented in the
following equation is utilized to control the phase.

B; = an +b; (8)

Here, B, denotes the natural frequency of each CPG. The
phase shift of each CPG is controlled by the parameter b;.
When we define the target signal X; that has a desired sig-
nal of the ith CPG x;, the parameter b; is operated as shown
ineq. (9).

b = k(x; — X3) )

Here, k denotes the gain factor and can control the time
until the stable state is reached. b; is proportional to the
phase difference between the target signal X; and the output
signal x;. After the phase difference (x; — X;) becomes 0,
b; approaches 0. The parameter k always takes | in this
paper. The reason for this will be discussed in section 4.

The block diagram of CPG; is shown in Fig. 4. X}, k,
b; and € denote the target signal, the gain factor, the value
proportional to the phase difference (x; — X;), and the non-
linearity coeflicient, respectively. The period of the output
signal x; is controlled by adjusting b; so that the phase dif-
ference between the control and target signals becomes 0.
When the target signal is obtained in advance, the phase of
the output signal x; can be temporally shifted in the CPG
model.

3.2 Rhythm generator

In order to define the desired target signals for
quadrupedal gaits, in this section, the rhythm generator
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Fig. 7 Configurations of CPG network

(RG) is proposed. We define that the waves of LF, RF,
LH, and RH are calculated and controlled by CPG,, CPG,,
CPGs, and CPGy. From Fig. 1, it is found that the types
of controlled phase differences are expressed on the basis
of LF and are four, which are 0, 7, g and 37” These signals
can be generated using the VDP equation because x and ‘!7;
are always calculated. Fig. 5 shows a block diagram of the

VDP equation. The calculation results of x and ‘(’7) are used

as the target signals. For instance, when x and —% are used
as the target signals of X} and X3, respectively, the phase
difference between the output signals x; and x, becomes
5. In the same way, these four types of phase difference
can be controlled using +x and i% as the target signals.

Therefore, the RG can be designed based on the VDP
equation using the subscript R.

dz/\’.R

dr
The target signal X; is described in eq. (11). ¢; and ¢pp
take —1, 0, or 1 and are decided on the basis of the gait
transitions, which we intend to control. ¢;; or ¢; always
takes 0.

d
~2¢(4? - 2) —25 +Bxp=0 (10)

dx
X; = ciixg +c,-277f (11)

Here, 7 determines the dimensions of xp and %, and ad-
justs the amplitude of ‘%
of xp and ‘% constant even if the parameters 4 and B, ,

G

change. 7 can be defined as in eq. (12).

to always make the amplitudes

max(xg) 24
- dxp = dxp ( I 2)
max(55f)  max(f
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Here, the max function max(-) denotes the amplitude of

each signal of xp and "‘. Since the amplitude of xp is
controlled by adjusting the parameter A, max(xg) can be
rewritten as 24. On the other hand, max(* dxp ) is measured
from the simulation results, because it cannot be estimated
beforehand. Fig. 6 shows a block diagram of the RG. The
parameters 4 and B, of the RG are equal to those of the
CPG in Fig. 4. The desired target signal of the CPG is
selected by a target signal selector. The function of the se-
lector is expressed by ¢;; and ¢j as eq. (11). For instance,
—xp is assigned as the target signal X;, and a combination
of ¢;; and ¢p is decided as ¢;;=—1 and ¢, =0.

The output signal x; controls the stepping movements
of the ith single limb. In this research, interlimb coor-
dinations, such as the phase relations between limbs, are
discussed. Interlimb coordinations result from the cou-
pling between the CPGs and the RG. The architectural dif-
ferences between the CPGs and the RG are in terms of
whether or not the target signal X; is input and the num-
ber of signals that are pulled out from the ith CPG and RG.
In other words, one signal is output as the output signal x;
from the ith CPG and # signals are output as target signals
of CPGs from the RG.
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3.3 CPG network

The proposed CPG network can be composed of one
RG and » CPGs on the basis of gait transition. The con-
nections of the CPG network can be logically and uniquely
determined based on gait transition. The procedure for de-
signing the CPG network in the walk mode is represented
as follows:

1. The RG and n CPGs are prepared. In this paper, the
number of CPG is four, because we aim to fabricate
quadrupedal locomotion signal generators (n=4).

2. The parameters 4 and B, are input in the RG and
CPGs. Because of this configuration, each CPG can
feature independent controllability in terms of the
amplitude and period of the output signal x;.

3. The output signal of each CPG is allocated as the
control signal to each leg.

4. The target signal X; of CPG; is determined on the
basis of a gait transition. In this paper, we focus on
the walk mode.
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5. xp is selected as the target signal X|. This process is
common in other gait modes. The output signal of
CPG, works as the reference signal for calculating
the phase differences between CPG, and the other
CPGs. (c11=1, ¢2=0)

6. The output signal x, controls the RF. Since the phase
difference between LF and RF is 7, —xj is selected
as the target signal of X5. (c21=—1, ¢22=0)

Z. T% is selected as the target signal of X3, because the

phase difference between LF and LH is 37” (c31=0,
cn=1)

8. —T‘%R is selected as the target signal of X4, be-
cause the phase difference between LF and RH is
3. (ca1=0, cpp=—1)

The configuration of the CPG network in the walk
mode is presented in Fig. 7(a). In the walk mode, c¢j=1,
6’1220, 6212—1, 6’22:0, C3]=0, C32=1, C41=O, and C42=—].
In the same way, the CPG network can be logically and
uniquely decided in the trot, bound, and gallop modes, as
shown in Figs. 7(b)-(d). Table 1 shows the combinations
of ¢;; and ¢;, in typical quadrupedal locomotion signals.

If the other gaits such as six- or eight-leg locomotion
signals can be defined by the four types of phase differ-
ence, the proposed CPG network can also be applied in
these multilegged locomotion signal generators by a sim-
ilar procedure. For instance, it is well known that one of
the typical gaits of a walking stick, which is a six-legged
insect, is an alternating tripod gait. A locomotion signal
for the gait can also be designed using the proposed CPG
network because locomotion signals can be denoted by two
types of phase difference, which are 0 and 7.

4. Simulations and Discussion

In order to verify the effectiveness of the proposed
method, the output signal of each CPG was investigated
with the 4th-order Runge-Kutta method. In this paper,
we aim to obtain typical quadrupedal gaits, which are the
walk, trot, bound, and gallop modes. The parameters 4 and
B, are provided by external signals.
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Figs. 8(a) and 8(b) show the simulation results of the
walk mode. In these simulations, €, k, and the initial values
of xz, x1, X2, X3, and x4, and ‘%, ‘%, ‘%, ‘%’ and ‘% were
0.2, 1,0.1, 0.1,=0.5, 0.3, 0.7, 0.1, 0.1, 0.3,0.3, and 0.2,
respectively. 4 and B, are 0.5 and 1, respectively. The
output values of CPGs and b, were measured up to 1200
steps. In Fig. 8(a), it is confirmed that the amplitude of the
limit cycle becomes almost 24 and the phase differences
between CPGs are controlled, as shown in Fig. 1. In Fig.
8(b), it is found that b; becomes 0 after the phase of each
x; was controlled by adjusting the target signal X;. In this
simulation, the operation that the value of b; omits 0.3 or
less was added, because X; is not necessarily equal to x;.
In Fig. 8(b), the horizontal line indicates that 5;=0.3.

Fig. 9 shows the relationship between the parameter &
and the number of steps to reach the stable state. The simu-
lation conditions were the same as those of the walk mode
excluding k. The steps were measured at £=0.01, 0.1, 1,
10, and 100. Oscillatory solutions were not obtained in the
case of k=100. In the simulation results, it is observed that
the steps are shortest at k=1. Therefore, for simplicity, k
was always set to 1 in the following experiments.

Fig. 10 shows the simulation results of three gait
modes: the trot, bound, and gallop modes. The simulation
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Fig. 11 Output signals of CPGs with various parameter
arrangements in walk mode

conditions were the same as those in the walk mode. From
the simulation results, it is found that the phase differences
between the CPGs were controlled as the gait transition
in Fig. 1| and that the amplitude of the limit cycle be-
came almost 24. From Figs. 8 and 10, it is confirmed that
the proposed CPG network generates and controls typical
quadrupedal locomotion signals.

In Fig. 11, the output values of each CPG were mea-
sured under several values of 4 and B,,;. In this simulation,
€, dt, k, and the initial values of xz, xi, x2, x3, and x4, and
D du do oy and €4 were 0.2, 0.1, 1, 0.1, 0.1, —0.5,
0.3,0.7,0.1, 0.1, 0.3, 0. 3 and 0.2, respectively. From Fig.
11, it is conﬁnned that the period was inversely propor-
tional to the parameter B,,, and that the amplitude reached
a steady state, 24 (solid lines), with the phase difference
being held at Z, which is the walk mode. Moreover, both
amplitude and-period are independently controlled. 7' de-
scribes the period of each output signal.

By changing the combinations of ¢;; and ¢;, some
gait transitions could be obtained with the proposed CPG
network. Fig. 12 shows part of the simulation results:
the walk-to-trot, trot-to-bound, and bound-to-gallop tran-
sitions. The combinations were changed after 1500 steps
on the basis of Table 1. In this simulations, the €, &, and
the initial values of xg, xy, x2, x3, and x4, and %',ﬁ, ‘%,

4o 45 and L were 0.2, 1, 0.1, 0.1, —0.5, 0.3, 0.7, 0.1,
0.1, 0.3, 0.3, and 0.2, respectively. 4 and B, ; were 0.5 and
1, respectively. It is confirmed that the phase differences
between the CPGs were controlled as the gait transition in

Fig. 1, and it took about 200 steps for the gait transition.
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Fig. 12 Gait transitions

Fig. 12(b) shows the transition of b; in the walk-to-trot
transition. In the transition, only b3 and by were changed,
because the target signals X3 and X; must be changed to
obtain the walk-to-trot transition. In Fig. 12(b), the hor-
izontal line indicates that »;=0.3. b; omitted 0.3 or less,
because X; did not always correspond to x;. Four numbers
from 1 to 4 in the figures denote the number of the out-
put signals x;. The simulation results show that each gait
transition can be successfully obtained.

5. Conclusions

In this paper, we proposed a CPG network with in-
dependent controllability for a quadrupedal locomotion
signal generator. The proposed model comprises several
CPGs and one rhythm generator (RG). Each CPG and the
RG are described by the van der Pol equation. The am-
plitude and period of the output signal from each CPG
and the RG were independently controlled by external sig-
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nals. Moreover, in order to control the phase shift between
CPGs, the period of each output signal is temporarily con-
trolled through connections that are only conjunctions be-
tween RG and each CPG. The proposed CPG network was
applied in the quadrupedal locomotion signal generator.
From some simulation results, it was confirmed that the
desired output signals could be obtained, and that the pro-
posed model holds the feature of independent controlla-
bility in terms of the amplitude and period of each output
signal, and the phase difference between CPGs even after
some gait transitions. If some gaits for multilegged loco-
motion signals can be defined by the four types of phase
difference, the proposed CPG network can also be applied
in multilegged locomotion signal generators.
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