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Abstract [n this papel', we propose a centl'al pattern generator (CPG) network with independent controllability for a
quadnlpedal locomotion signal generator. The proposed model comprises several CPGs and one rhythm generator (RG). Each
CPG and the RG are described by the van der Pol (VDP) equation. The VDP equation has a limit cycle and a feature of indepen
dent controllability in terms of the amplitude and period of the limit cycle. The amplitude and period of an output signal from each
CPG and the RG are independently controlled by external signals, because the CPGs and RG are designed such that the feature
of the VDP equation is maintained. [n ordel' to control the phase shift between CPGs, the pedod of the output signal fr'om each
CPG is temporarily controlled through connections that are only conjunctions between the RG and each CPG. The proposed CPG
network is applied to a quadrupedal locomotion signal generator, and genentes typical quadrupedal locomotion signals, which
are the walk, trot, bound and gallop modes.
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1. Introduction

Locomotion signals such as walking, running, swim
ming and flying are generated and controlled by the cen
tral nervous system so called the central pattel1l generator
(CPG) [I]. Locomotion signals of terrestrial animals can
be classified into some periodic patterns that are gaits. In
recent years, many CPG network models [2]-[4] have been
reported.The CPG network models comprise some oscil
lators that are described by higher-order differential equa
tions. In this paper, the oscillators are called CPGs. In
conventional network models, CPGs are coupled to each
other through connection weights because these structures
of the CPG network are designed from the viewpoint of
physiology.

One of the applications that we are aiming at is a walk
ing robot. Each leg of the robot is controlled by an out
put signal from each CPG. Output signals of the CPGs are
controlled by adjusting some connection weights through
trial and error and by changing configurations in the CPG
network. Generally, walking speed can be controlled by
changing the amplitudes of a signal. Additionally, if it is
necessary to change to a faster speed, periods of the signals
must be controlled. However, it is not so easy to control
and analyze the output signals of the CPG network in terms
of the amplitude and period of each CPG, and the phase
difference between CPGs. This is because these CPG net
works consist of some CPGs that are described by higher-
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order differential equations and have mutual connections
between CPGs.

To solve these problems, in this paper, we propose a
CPG network with independent controllability in terms of
amplitude, period and phase difference [5], [6]. In order
to design a locomotion signal generator, the CPG must sat
isfy two necessary and sufficient conditions: the CPG must
have (I) a limit cycle, which is represented by higher-order
non Iinear differential equations, and (2) a high controlla
bility for the amplitude and period of the signal in the sta
ble state, i.e., in the limit cycle. Moreover, in the CPG
network, the phase differences between the CPGs must
be controlled. The proposed CPG network comprises a
rhythm generator (RG) and some CPGs. Each CPG and
the RG are described by the Van del' Pol (vDP) equation.
The vDP equation suits the CPG model well, because the
YOP equation is the simplest model that has a limit cy
cle and features independent controllability with respect to
the amplitude and period of the limit cycle [7]. The am
plitude and period of the output signal from each CPG are
controlled almost independently by external signals. The
phase difference between CPGs is controlled by changing
connections that are connected between the RG and each
CPG independently of the amplitude and period of each
CPG. Moreover, the configuration of the CPG network can
be logically and uniquely determined on the basis ofa gait
transition. In this study, we apply the CPG network in the
quadrupedal locomotion signal generator and confirm that
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2. Background and Methods

2.1 Quadrupedal gaits

Locomotion signals of quadrupedal animals are sepa
rated in some periodic patterns so called gaits. These gaits
are generated and controlled depending on their speed of
locomotion and the condition of terrain [8]. In this paper,
we focus on four of the most common quadrupedal gaits 
the walk, trot, bound and gallop modes. These four gaits
are shown schematically in Fig. 1. LF, LH, RF and RH
stand for the left foreleg, left hindleg, right foreleg and
right hindleg, respectively. The arrow and equal sign in
dicate the direction of the phase difference and in phase,
respectively. In the walk mode, which is a slow gait, the
limbs move in the order of LF, RH, RF and LH with a
quarter period. The phase relations of the walk mode are
shown in Fig. lea). Tn the trot mode, which is a mediul11
speed gait, diagonal limbs, e.g., LF and RH, move together
and in phase, and pairs of diagonal limbs move half a pe
riod out of phase with one another. Fig. l(b) shows the
phase relations of the trot mode. The bound mode is a fast
gait. In this mode, the front and hind limbs, respectively,
move together and in phase, as Fig. 1(c) shows. The gallop
mode, which is also a fast gait, resembles a bound, except
for the limbs of the front and hind pairs being slightly out
of phase with each other. Fig. l(d) shows the phase rela
tions ofthe gallop mode. Other quadrupedal gaits, such as
the canter, exist, however, they are less conunon than these
four gaits and are therefore not considered in this paper.

In the present study, the ePG network model was con
sidered to be in a particular gait mode when the rela
tive phases of the respective oscillator output signals were
within 10% of a gait cycle of those expected for the ideal
gait. The above criterion was considered reasonable, given
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the variability of natural animal gaits [9], [10].

2.2 Van del' Pol equation

The VDP equation was proposed by Van del' Pol tll

1926 [11]. The VDP equation describes the theory of
vacuum-tube oscillators, and is one of the simplest model
that has a limit cycle. The VDP equation is derived from
the enhanced and damped oscillations. To express a limit
of the amplitude, the term of a nonlinearity coefficient is
assumed. The VDP equation is given by eq. (1).

cf-x dx
--E(1-x2)-+x=0
dt2 dt

Here, E describes the nonlinearity coefficient and affects
the shape of its waveform. When the parameter E is small
(O<E« 1), the solution of the VDP equation is a sustained
sinusoidal oscillation.

Two sets of control parameters are inputted in the VDP
equation: the amplitude parameter A and the frequency pa
rameter B [12], [13].

d
2
x (2 ?) dx ?- - 2E A - x- - + B- x = 0

dt2 dt

Kryloff and Bogoliuboff have devised a method for the ap
proximate solution of eg. (2) [14]. Hereafter, eq. (2) is
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Fig. 3 Amplitude and period of limit cycle with two
parameter anangements Fig. 5 Block diagram ofVDP equation

called the VDP equation. The mathematical method is
based on the fact that this equation becomes a harmonic
oscillation if E=O in the VDP equation.

Here, a and ¢ are arbitrary constants. Eq. (4) shows that
the period can be controlled by adjusting the parameter B.
By Kryloff and Bogoliuboff approximation, furthet1l10re,
the following equations are obtained.

d2x ?
- +B-x= 0
dt2

Eq. (4) is derived from eq. (3).

x = a sin(Bt + ¢)

(3)

(4)

x and 4-,x were 0.2, 0.5 and 0.1, respectively. [n the simula-
<I

tion, the amplitude and period were measured. In the case
of A=O, the VOP equation operated as the damped oscil
lation. Oscillatory solutions are always obtained from the
VDP equation in the range of A<B. Fig. 3 shows that the
amplitude and period of the limit cycle could be indepen
dently controlled by adjusting the parameters A and B.

From these results, it is confirmed that the VDP equa
tion has a limit cycle and an independent controllability.
It is considered that the features must suit the CPG model
well [7].

3. CrG Network Model

From eq. (5), it can be seen that the amplitude reaches a
steady state, i.e., ~=O, then a=2A. In an actual simulation,
however, the amplitude does not accurately become 2A be
cause a mathematically approximation method is used. Eq.
(6) shows that the period does not depend on time. From
eqs. (4) and (5), it is proved that the period and amplitude
of the limit cycle can be independently controlled by ad
justing the parameters B and A, respectively. Fig. 2 shows
the simulation results of the VDP equation, where, A, B, E,

the initial value of x and the initial value of ~ were I, I,
0.2,0.1 and 0.1, respectively. The stimulation ofx=2.5 was
added in the 410 step. Fig. 3 shows the simulation results
of the VDP equation under some conditions of the parame
ters A and B. Tn this simulation, E, and the initial values of

3.1 CPG model

The proposed CPG model holds the feature of the VDP
equation. The ith CPG model(CPGa is written as eq. (7).

Here, the parameter E is a small constant and is called a
nonlinearity coefficient. Xi is the output signal ofCPG i 0=
I, 2,. .. , n). A and B i determine the amplitude and period
of Xi in the stable state, respectively. The ampl itude and
period are independently controlled by the parameters A

(7)~ Xi 2 (A 2 .2) dXi B2 • - 0-- - E - X· - +.x,,-
dt2 f dt f f

In this section, we explain the CPG network with inde
pendent controllability in terms of the amplitude and pe
riod of the limit cycle, and the phase difference between
CPGs. The CPG network comprises some CPGs and one
rhythm generator (RG), and can be designed on the basis
of the VDP equation.

(5)

(6)d¢ = 0
dt

da ? a2

- = aE(A- --)
dt 4
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(RG) is proposed. We define that the waves of LF, RF,
LH, and RI-I are calculated and controlled by CPG 1, CPG 2,

CPG3 , and CPG4 . From Fig. I, it is found that the types
of controlled phase differences are expressed on the basis
ofLF and are four, whicb are 0, 7[, ~ and ~. These signals

can be generated using the VDP equation because X and cL/
x

cI

are always calculated. Fig. 5 shows a block diagram of the
VDP equation. The calculation results of X and cL/

x are used
<I

as the target signals. For instance, when X and - cL/
x are used

cI

as the target signals of XI and X2 , respectively, the phase
difference between the output signals XI and X2 becomes
~. In tbe same way, these four types of phase difference

~an be controlled using ±x and ± '1ft as the target signals.
Therefore, the RG can be designed based on the VDP

equation using the subscript R.

J2 XII (2 2) dXII 2
dt2 - 2E A - XII dt + Bn/XII = 0 (10)

The target signal Xi is described in eq. (11). Cil and Gi2

take -1, 0, or 1 and are decided on the basis of the gait
transitions, which we intend to control. Cil or Ci2 always
takes O.

Here, T determines the dimensions of XII and [~~;R, and ad

justs the amplitude of [~~r to always make the amplitudes

of XII and [~;:' constant even if the parameters A and Bn/

change. T can be defined as in eq. (12).

max(xlI) 2A
T - - (12)

- max(dXR) - max(dxlI)
dl dl

(9)

(8)Bi = Bnl + bi

bi = k(Xi - Xi)

Table I Combinations of Cil and Ci?

A Rhythm Generator
rdx/dt 0; XI

-rdx/dt " HbJlo
'00 t5

XiX R
..., <1.l
<1.l-
bJl<1.l :

-XII @r/l
E--< x"

-
mode [CII, C12] [C21, cn] [C31, C32] [C41,cd

walk [1,0] [-1,0] [0,1] [0, -I]
trot [1,0] [-1,0] [-1,0] [1,0]

bound [1,0] [1,0] [-1,0] [-1,0]
gallop [1, 0] [0, -1] [0, 1] [-1,0]

Fig. 6 Block diagram of rhythm generator

Here, k denotes the gain factor and can control the time
until the stable state is reached. bi is proportional to the
phase difference between the target signal Xi and the output
signal Xi. After the phase difference (Xi - A';) becomes 0,
bi approaches O. The parameter k always takes 1 in this
paper. The reason for this will be discussed in section 4.

The block diagram of CPG i is shown in Fig. 4. Xi, k,
bi and E denote the target signal, the gain factor, the value
proportional to the phase difference (Xi - x,), and the non
linearity coefficient, respectively. The period of the output
signal Xi is controlled by adjusting bi so that the phase dif
ference between the control and target signals becomes O.
When the target signal is obtained in advance, the phase of
the output signal Xi can be temporally shifted in the CPG
model.

and B i , respectively [7], [14]. In particular, the period is
inversely proportional to the parameter Bi, and the ampli
tude reaches 2A in the stable state. n denotes the required
number of CPGs in the CPG network.

In order to design the CPG network, the phase differ
ence between CPGs must be controlled. To control the
phase difference, in this study, the phase of each CPG is
temporally shifted. The parameter Bi represented in the
following equation is utilized to control the phase.

In order to define the desired target signals for
quadrupedal gaits, in this section, the rbythm generator

Here, Bn/ denotes the natural frequency of each CPG. The
pbase shift of each CPG is controlled by the parameter bi.
When we define the target signal Xi that bas a desired sig
nal of the ith CPG Xi, the parameter bi is operated as sbown
in eq. (9).
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Here, the max function maxO denotes the amplitude of
each signal of XR and d::. Since the amplitude of XII is
controlled by adjusting the parameter A, max(xII) can be
rewritten as 2A. On the other hand, max( (~~R) is measured
from the simulation results, because it cannot be estimated
beforehand. Fig. 6 shows a block diagram of the RG. The
parameters A and Bn! of the RG are equal to those of the
CPG in Fig. 4. The desired target signal of the erG is
selected by a target signal selector. The function of the se
lector is expressed by Gil and Gi2 as eq. (11). For instance,
-XII is assigned as the target signal Xi, and a combination
of Gil and Gi2 is decided as Gil =-1 and Ci2=0.

The output signal Xi controls the stepping movements
of the ith single limb. In this research, interlimb coor
dinations, such as the phase relations between limbs, are
discussed. Interlimb coordinations result from the cou
pling between the ePGs and the RG. The architectural dif
ferences between the CPGs and the RG are in terms of
whetber or not the target signal Xi is input and the num
ber of signals that are pulled out from the ith ePG and RG.
In other words, one signal is output as the output signal Xi

from the itb ePG and n signals are output as target signals
ofCPGs from the RG.

Journal of Signal Processing, Vol. 12, No.6, November 2008

3.3 ePG network

Tbe proposed ePG network can be composed of one
RG and n CPGs on the basis of gait transition. The con
nections of the ePG network can be logically and uniquely
determined based on gait transition. The procedure for de
signing the CPG network in the walk mode is represented
as follows:

I. The RG and n ePGs are prepared. In this paper, the
number of ePG is four, because we aim to fabricate
quadrupedal locomotion signal generators (n=4).

2. The parameters A and Bn! are input in the RG and
CPGs. Because of this configuration, each ePG can
feature independent controllability in tenns of the
amplitude and period of the output signal Xi.

3. The output signal of each CPG is allocated as the
control signal to each leg.

4. The target signal Xi of CPGi is determined on the
basis of a gait transition. [n this paper, we focus 011

the walk mode.

445



0.01

25

20
~
o
-; 15

~ 10
E
til 5

1'\
'\
'\

\-
0.1 1 10

parameter k
100

Xi

1 1-~--;""--.---""::'-,------/j---ltrilriH\h.------"--/h-fJhI-f1~ifit-j;HHhHr-Ih"

o

-I e-u-...lL.JIlJ'l-I-IH1-I\+11-"-iI-'I-II-\-I1H+

1200
steps

(a) Trot mode

Fig. 9 Relationship between the parameter k and number
of steps until reaching the stable state

(c) Gallop mode

1200
steps

800

(b) Bound mode

400o

Xi

1 f-:-T:-=-----ril~M~~~7MIlmwiffutt'fWrJVwwvvmvWVVW\

Fig. 10 Output signal of ePGs in (a) trot, (b) bound, and
(c) gallop modes

Figs. 8(a) and 8(b) show the simulation results of the
walk mode. In these simulations, E, k, and the initial values

d d dXR dXI dX2 dX3 d dX4OfXII,XI,x2,x3,an x4,an d/,[jf,[jf,[jf,an [jfwere
0.2, 1,0.1,0.1, -0.5, 0.3, 0.7, 0.1, 0.1, 0.3, 0.3, and 0.2,
respectively. A and Bn/ are 0.5 and 1, respectively. The
output values of ePGs and bn were measured up to 1200
steps. In Fig. 8(a), it is confirmed that the amplitude of the
limit cycle becomes almost 2A and the phase differences
between ePGs are controlled, as shown in Fig. I. In Fig.
8(b), it is found that bi becomes 0 after the phase of each
Xi was controlled by adjusting the target signal Xi. In this
simulation, the operation that the value of bi omits 0.3 or
less was added, because Xi is not necessarily equal to Xi.

In Fig. 8(b), the horizontal line indicates that b i =0.3.
Fig. 9 shows the relationship between the parameter k

and the number of steps to reach the stable state. The simu
lation conditions were the same as those of the walk mode
excluding k. The steps were measured at k=O.OI, 0.1,1,
10, and 100. Oscillatory solutions were not obtained in the
case of k= 100. In the simulation results, it is observed that
the steps are shortest at k= I. Therefore, for simplicity, Ie
was always set to I in the following experiments.

Fig. 10 shows the simulation results of three gait
modes: the trot, bound, and gallop modes. The simulation

4. Simulations and Discussion

In order to verify the effectiveness of the proposed
method, the output signal of each ePG was investigated
with the 4th-order Runge-Kutta method. In this paper,
we aim to obtain typical quadrupedal gaits, which are the
walk, trot, bound, and gallop modes. The parameters A and
Bill are provided by external signals.

5. XII is selected as the target signal XI. This process is
common in other gait modes. The output signal of
ePG I works as the reference signal for calculating
the phase differences between ePG 1 and the other
ePGs. (CII=I, CI2=0)

6. The output signal X2 controls the Rf. Since the phase
difference between LF and Rf is Jr, -XII is selected
as the target signal ofX2. (C21=-I, C22=O)

7. T
d
::, is selected as the target signal ofX 3 , because the

phase difference between LF and LH is ~. (C31=0,
C32= 1)

8. -T(~:' is selected as the target signal of X4, b~

cause the phase difference between LF and RH IS

~. (C41=0, C42=-1)

The configuration of the ePG network in the walk
mode is presented in Fig. 7(a). In the walk mode, CII = I,
CI2=0, C21=-I, C22=O, C31=0, c32=I, C41=0, and c42=-I.
In the same way, the ePG network can be logically and
uniquely decided in the trot, bound, and gallop modes, as
shown in Figs. 7(b)-(d). Table I shows the combinations
of Cil and Ci2 in typical quadrupedal locomotion signals.

If the other gaits such as six- or eight-leg locomotion
signals can be defined by the four types of phase differ
ence, the proposed ePG network can also be applied in
these multilegged locomotion signal generators by a sim
ilar procedure. For instance, it is well Imown that one of
the typical gaits of a walking stick, which is a six-legged
insect, is an alternating tripod gait. A locomotion signal
for the gait can also be designed using the proposed ePG
network because locomotion signals can be denoted by two
types of phase difference, which are 0 and Jr.
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conditions were the same as those in the walk mode. From
the simulation results, it is found that the phase differences
between the ePGs were controlled as the gait tTansition
in Fig. I and that the amplitude of the limit cycle be
came almost 2A. From Figs. 8 and 10, it is confirmed that
the proposed ePG network generates and controls typical
quadrupedal locomotion signals.

In Fig. I I, the output values of each ePG were mea
sured under several values of A and BII/. In this simulation,
E df k and the initial values of XR, XI, X2, X3, and X4, and
lrR 'dx; dx, dx) and dX4 were 0.2 0.1 I 0.1 0.1, -0.5,
ell' cll' elf' ell' ell ""

0.3,0.7,0.1,0.1,0.3,0.3, and 0.2, respectively. From Fig.
II, it is confirmed that the period was inversely propor
tional to the parameter Bill and that the amplitude reached
a steady state, 2A (solid iines), with the phase difference
being held at ~, which is the walk mode. Moreover, both
amplitude and-period are independently controlled. T de
scribes the period of each output signal.

By changing the combinations of Cil and Cn, some
crait transitions could be obtained with the proposed ePGb

network. Fig. 12 shows part of the simulation results:
the walk-to-trot, trot-to-bound, and bound-to-gallop tran
sitions. The combinations were changed after 1500 steps
on the basis of Table I. Tn this simulations, the E, k, and
h . . . I I f d d dXR dXIt e It1ltla va ues 0 XR, XI, X2, X3, an X4, an d1' d1'
dx, dx) alld dX4 wel'e 02 I 0 I 0 I -05 0.3 0.7 0.1ell' ell' dr . , , 0.' ., ., , , ,
O. I, 0.3, 0.3, and 0.2, respectively. A and B II/ were 0.5 and
I, respectively. It is confirmed that the phase differences
between the ePGs were controlled as the gait transition in
Fig. I, and it took about 200 steps for the gait transition.

I
I

14·\;,00;;-----'--'71?n50:n0--'-------;17.;60"'0--'----10'i70MO:----'--i'ii,S7uOO,-----'--Ti'i1900
steps

(d) Bound-to-gallop transition

Fig. 12 Gait transitions

Fig. 12(b) shows the transition of bi in the walk-to-trot
transition. In the transition, only b3 and b4 were changed,
because the target signals X3 and X4 must be changed to
obtain the walk-to-trot transition. In Fig. 12(b), the hor
izontal line indicates that b i =0.3. bi omitted 0.3 or less,
because Xi did not always correspond to Xi. Four numbers
from I to 4 in the figures denote the number of the out
put signals Xi. The simulation results show that each gait
transition can be successfully obtained.

5. Conclusions

In this paper, we proposed a ePG network with in
dependent controllability for a quadrupedal locomotion
signal generator. The proposed model comprises several
ePGs and one rhythm generator (RG). Each ePG and the
RG are described by the van der Pol equation. The am
plitude and period of the output signal from each ePG
and the RG were independently controlled by external sig-
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nals. Moreover, in order to control the phase shift between
CPGs, the period of each output signal is temporarily con
trolled through connections that are only conjunctions be
tween RG and each CPG. The proposed CPG network was
applied in the quadrupedal locomotion signal generator.
From some simulation results, it was confirmed that the
desired output signals could be obtained, and that the pro
posed model holds the feature of independent controlla
bility in terms of the amplitude and period of each output
signal, and the phase difference between CPGs even after
some gait transitions. If some gaits for multi legged loco
motion signals can be defined by the four types of phase
difference, the proposed CPG network can also be applied
in multilegged locomotion signal generators.
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